3 Architectural Viewpoints

Answers and Solutions

3.7.1 Answers

3.1: Palladio currently supports view points for structural, behavioral and deployment
modelling. The structural view types model component repositories and system assembly.
The behavioral view types model Service Effect Specifications (SEFFs) and usage models.
The deployment view types model the resource environment and allocation of assembly
contexts.

3.2: The service signatures that are specified in interfaces do not depend on the components
that provide corresponding services (Rhinelander 2007). Interfaces can, for example, be
modelled before a component that provides them is modelled. Therefore, components
should not have interfaces in the sense that these interfaces pertain to the components.
It is sufficient to state which components provide which interface and to model these
interfaces separately.

3.3: A component can require several different interfaces for several reasons: For example,
it may have dependencies to different services that are also functional separated in the
domain and not necessarily provided by a single component. Or it may be necessary to
separate identical functionality on different layers of abstraction, e.g. high-level services
specified by a protocol and their technical realization using a database.

3.4: In order to ease the reuse of components, which is the main goal of using them,
we have to distinguish between components, their instantiation in the form of assembly
contexts and component types. Components only specify the signatures of the services
they provide and require by providing and requiring the according interfaces. If a
component is instantiated, the individual properties of this instance are encapsulated in
an assembly context. Component types, however, can be used to express that components
provide or require interfaces that are also provided or required by other components.
This makes it possible to reuse components of the same type although they may provide
additional interfaces. In short, components specify which services are provided and

2 Chapter 3

required, assembly context specify how this is done, and component types express which
kind of components can replace each other.

3.5: There are the provided type and the complete type. They are used in early design
stages to specify interfaces of a component as a draft for the component developers.
Abstract components can be used within composite structures (e.g., as assemblies within
systems) as a placeholder. This placeholder enables an iterative engineering process
where architects hand-over the placeholder’s specification to component developers and
can substitute the placeholder with the actual component once implemented.

3.6: There cannot exist a connector concept which is independent of the used interface and
can be instantiated. Assembly connectors are exclusively on the instance level and bound
to the interfaces of the components, they connect. No, connectors only provide linking
and message passing. Further functionality should be modeled using components.

3.7: In contrast to UML activity diagrams, SEFFs provide a specific loop construct and
specific activities which are required for performance prediction for instance.

3.8: In Palladio, the component developer usually only models the inner-component
behavior explicitly. Software architects can, however, derive the inter-component behavior
from the component assembly, e.g., by tracing the external call actions in the SEFFs.

3.9: In the assembly context the wiring of the components is modeled, while in the
deployment context the location of the assembled components (of the assembly context)
on hardware is defined. This separation is important allowing to independently design
the architecture from the deployment configuration on hardware.

3.10: A software architecture can be defined as the set of architectural design decisions,
i.e. design decisions that realize one or more requirements (Jansen et al. 2005).

3.11: If an architectural design decision is not modelled explicitly this can make it difficult
to find, follow, and revise the decision. As the architecture of a system usually involves
several artefacts it is not always clear where to search for a decision that affects several
elements. This can be easier for implementation code. Therefore, many but not all
decisions that affect only the implementation and not the architecture of a system do not
need to be modelled explicitly if they are properly documented in the code. Nevertheless,
a design decision that is only explained in a code comment is hard to retrieve from other
artefacts and is usually restricted to text.

3.7.2 Solutions
3.1: See Figure 3.1.

3.2: See Figure 3.2.

Architectural Viewpoints

«interface» «interface»
IDownload IEncoding

«provides» ﬂ \

«requires» «requires» «provides»

/<provides» «requires»\ / \
i AN

«Implementation {l «Implementation $:| «Implementation {l
Component Type: Component Type: Component Type:
Composite Component» Basic Component» Basic Component»
ReEncoder EncodingAdapter LameWrapper

Figure 3.1: Repository Sample Solution

«CompositeComponent»
ReEncoding
oL e OGN e
IDownload EncodingAdapter —C\ LameWrapper
AN
RN

A

Figure 3.2: Assembly Sample Solution

«interface»
I1WebGUI

«interface»
1ShopEngine

N

«provides» «requires»

\

7 X

«provides»

\

3.3: See Figure 3.3 for the repository and Figure 3.4 for the system.

«Basic
Component»
WebGUI

£]

«Basic
Component»
ShopEngine

£]

«Basic {]
Component»
PaymentAdapter

«requires»

«interface»
1Goods
Management

TN

«requires» “TeAUITES” «requires»

\

«provides»

T~

«interface»
1User
Management

«interface»
10rder
Management

«interface»
IPayment

N

«provides»

«provides»

«provides»

«Basic &] «Basic &] «Basic @ |
Component» Component» Component»
GoodsManagement UserManagement OrderManagement
«requires» «requires» «requires»
«Basic {]
«interface» Component»
IShopDB «provides» DB

Figure 3.3: Web Shop Repository Sample Solution

3.4: A possible resource environment consists of three resource containers, each represent-
ing a server. They are connected via the same linking resource, which specifies its latency
and throughput. The resource containers may specify several resources. Which resources
should be modeled depends on the types of resource demands, which are expected on
that resource container. The resource types most common are: CPU and hard disk. For
theses resource types, processing rates and scheduling strategies are specified.

Several deployments of the assembly contexts are possible. An easy one is to deploy
every one onto one server. A three tier deployment would place the WebGUI onto one
server, the Database onto another and the remaining components (business logic) onto

Architectural Viewpoints

WebShop
«System»

i —

1Goods

? IWebGUI
I
I

v

(P IWebGUI

WebGUI

((JP\ IShopEngine

ShopEngine

LY

I

I

I - -

| Management ,__ — |User ~ -\ 10rder

| (P Management Management

: Goods El User $:] Order $:]

| Management Management Management
VoA A A

| -

~

-

? IPayment

PaymentAdapter

A\ IPayment

I
'
IPayment (J\

Figure 3.4: Web Shop System Assembly Sample Solution

-~ —
~
—

Vo
I

IShopDB

g]

DB

the third server.

A quantifiable quality metric which can be observed is the response time of user
interactions. Which of the two deployments is the better one, depends on the usage of
the system. If there are only a few users on the system, the deployment onto one machine
is to be preferred, as response times can be lower, as there is no overhead from network
communication (it is also cheaper). If there are many users, the three tier deployment
may be beneficial, as the load is distributed over three machines, which increases the

6 Chapter 3

system capacity. Which of these alternatives is actually suited can be inspected if the
workload is modeled and the system simulated. The outcome of the different deployment
models can then be compared.

3.5: See Figure 3.5.

Reserver Calculate
Next Cost
Good
[else]
Charge
[reserve Customer
successful]

[else]

[all goods reserved]
Unreservh/ [else])
Goods /™

[charging
successful]

Send Confirmation
Mail

Figure 3.5: Web Shop Activity Diagram Sample Solution

4 Architectural Reuse

Answers and Solutions

4.7.1 Answers
4.1:

* Architecture style: An architecture style basically reflects a structure capturing archi-
tecture knowledge to be used in a certain problem context. This principle is pursued
consistently through the entire software architecture and with the substantial absence
of exceptions.

« Architecture pattern: Solution for a recurring problem that is applied on the architecture
level. The solution is concerned with basic architecture concepts and crosses the
boundaries of several architecture elements.

* Reference architecture: A reference architecture is designed for a specific domain. It
standardises structural elements, their types and relations between these elements. This
abstract structure can be seen as a template that can be instantiated for all systems of
the domain.

4.2: Styles are more abstract, have more degrees of freedom in the realization and define
an overall structure of the system. Architectural patterns are strictly defined, and many
different patterns can be used in the same system.

4.3: A correct selection of style and related guidance of subsequent design decisions
assures qualities and properties of the to-be built system.

4.4: The type of the style is crucial here. Layered Architecture Style is concerned with
logical structural decomposition of a system, while Multi-Tier Architecture Style is
concerned with the emphasis on the deployment of the system.

8 Chapter 4

4.5: No, in some cases application of architectural patterns may lead to over-complicated
design and even decreased quality of the system (e.g. performance bottlenecks in case of
a Facade pattern).

4.6: No, a specific system architecture may omit or re-define some of the components.

4.7.2 Solutions

4.1: You need a concept allowing data collection from the sources, their processing in the
cloud and delivery of the results back to the customers. Client-Server Architecture Style
allows you the definition of the frontend as a thin client collecting data from the customer,
and a server backend responsible for data processing. The communication could be
realized via standard TCP/IP protocol. Since your company is regularly building such
cloud applications, most likely you would also have at least a company-internal reference
architecture available for cloud-based solutions. Thus, you would start your work from
investigation if there is such an architecture available. Your would then compare the
requirements to your system to the requirements definition of the reference architecture.
Finally, you would instantiate the components of the reference architecture with to the
required components of the system, and do the gap analysis. Such approach would allow
you to reuse knowledge from the previous projects and a fast delivery to your customer.

4.2: Since you need a concept allowing to handle many variations of similar concrete soft-
ware architectures, building a product line architecture provides you many advantages.
SPLs allow you to create a base architecture containing your base functionality every con-
crete software architecture should contain (e.g. call functionality). This base architecture
can be extended by further components according to the product requirements. Further
extensions may for instance be a clock or a browser functionality. These extensions can be
reused for each instance of the product. Thus, this allows a high level of reuse and a fast
time-to-market for the concrete product.

5 Modeling Quality

Answers and Solutions

5.8.1 Answers

5.1: Goal-oriented models are usually smaller and easier to handle than general purpose
models. They avoid wasting efforts for understanding and modeling parts of the system,
which are irrelevant to the quality goals. Goal-oriented modeling can also help to
choose appropriate methods and tools thus further optimizing the whole quality analysis
process.

5.2: System stakeholders are often not clear about the quality goals themselves or are
unable to formulate them in an unambiguous way. Goals may also change or get refined
during the development of a system as more information becomes available. For example,
it may be understood that an initial performance goal for a very fast responding system is
simply too expensive to implement. Methods to assist the software architect in quality
modeling are GQM, QAW, and ATAM.

5.3: If a component developer provided timing specifications or failure probability
specifications with a software component, these specifications would be tied to the
specific context of the component developer. For example the timing information would
be based on the speed of the computer the component developer tested the component,
or the failure probabilities would be based on the specific usage profile the component
developer assumed during testing. A software architect using the component would
use a different resource environment and usage profile, thus the specifications provided
by the component developer would not be accurate. The component developer in turn
cannot foresee all contexts a component will be used in or all usage profiles of future
users. Factors influencing the quality properties of a component are: the underlying
resource environment, the implementation of specific algorithms for a given component
specification, the usage profile of a component, concurrently executing application, and
the state an application or component is in while executing.

5.4: It is not possible, as the usage model is specified by a domain expert and restricted
to the information of this role. The domain expert should not tie the usage model to a
specific resource environment, which is in the responsibility of the software architect.

10 Chapter 5

5.5: The model construct is called Component Parameter. Component developers can use
it to model performance influences due to data stored in a database. For example, it is
possible to model the size of a database table, which can influence the execution time of
a search query. The software architect needs to override the default values given by a
component developer for a specific application context.

5.6: A component developer may only specify reference to abstract resource types in an
RDSEFEF. These abstract references are resolved into concrete resources (e.g., 2 GHz CPU)
once the resource environment model from the system deployer.

5.7: Linking Resources within a resource environment model allow expressing a network
latency as well as a processing rate and a failure probability. The Palladio solvers add the
latency of requests to their overall execution time and incorporate the failure probability
into the overall system failure probability.

5.8.2 Solutions

5.1: The steps to model an RDSEFF are roughly as follows: you need to model an interface
and add a service to it in the PCM repository. The respective component needs to be
connected to this interface using a Provided Role. Then a new RDSEFF can be created
for the service in the repository editor. By double clicking the RDSEFF in the repository
editor, the RDSEFF editor is opened. You then need to defined at least a Start Action and
a Stop Action. An Internal Action can be added to the RDSEFF and the control flow can
be adjusted so that this Internal Start Action follows the Start Action and the is followed
by the Stop Action.

5.2: From the user perspective creating a Palladio Usage Model is similar to creating an
RDSEFF as in the former exercise. A Palladio Usage Model can be created from scratch
and independently from other models. After executing the Palladio Usage Model creation
wizard, a simplistic Usage Model is already generated automatically. Add a call to a
component service and connect the usage model to the corresponding system model.

5.3: First, you need to add the respective parameter to the interface specification of the
service (use the service from exercise 5.1). Locate the interface in the repository model
and add a simple parameter of the time int and give it an appropriate name. Now you
can reference the parameter from the RDSEFFs for the services. Open the RDSEFF from
exercise 5.1 and locate an Internal Action. Add a resource demand to this Internal Action
by right-clicking it. A dialog opens to allow entering the parameter dependency. Enter
the name of the formerly created parameter, add the suffix “.VALUE” to refer to the
parameter value and then specify an arithmetic operation, e.g., myParameter. VALUE X5.
Click OK to close the dialog. Now the Usage Model (e.g., the one from exercise 5.2) needs
to be adjusted accordingly. Locate the Entry Level System Call for the respective service
and add a Parameter Characterization to it. Specify “myParameter. VALUE = 10”. Now

Modeling Quality 11

the value 10 can be propagated to the respective component service, so that the resource
demand of 10 x 5 = 50 work units can be derived.

5.4: You can create a resource environment from scratch using the Palladio editor’s
wizard. First create the two Resource Containers with included Processing Resources,
and specify the properties of the Processing Resources. Create a Linking Resource by
selecting the corresponding icon from the tool box. Parametrize the Linking Resource as
well. Save the model and start the Palladio editor wizard for the Allocation Model. Select
the source System Model which includes the components to be deployed and select the
source resource environment previously created. In the graphical editor for the Allocation
Model, you can drag components into Resource Containers to specify their deployment.

6 Getting The Data

Answers and Solutions

6.6.1 Answers

6.1: System must be fully implemented and running on representative (or productive)
servers. Design time analysis is not possible. Logging overhead must be low to avoid
skewing of the measured data.

6.2: Middleware instrumentation does not provide insights into the internals of individual
software components.

6.3: The focus of Real User Monitoring is on understanding the user behaviour, while
the goal of Application Performance Monitoring is to identify and resolve performance
problems during operation as early as possible.

6.4: Real User Monitoring can be used to derive user behaviour, which can be used
to create usage models. Application Performance Monitoring provides insights on the
application’s control flow and resource demands, which can be used to specify service
effect specifications.

6.5: Setting up Application Performance Monitoring (APM) entails system instrumenta-
tion. Each instrumentation probe comes with an overhead. Thus, when setting up APM
the trade-off between level of detail and the monitoring overhead has to be assessed.

6.6: Data collection in virtualized enviroments is difficult because of contention effects.
Such contention by other applications leads to response times that are not representative.
A possible solution is to measure more fine-grained data in the hypervisor instead of
end-to-end times.

6.6.2 Solutions
6.1:

(a) The methods have the following execution times:

14

(b)

(©

Chapter 6

doWork(2): 4 ms

doWork (4): 16 ms

doWork (5): 25 ms

doWork (18): 100 ms

doWork (15): 225 ms

methodA(): (16 + 10*225) ms = 2266 ms
methodB(): (10*29 + 100) ms = 390 ms
methodCQ): 225 ms

methodD(): (4 + 25) ms =29 ms
doService(): (2266 + 390) ms = 2656 ms

Thus, the execution time of method doService() is 2656 ms.

The methods have the following execution times if an instrumentation probe has been
injected in each method:

doWork (2): (10 +4) ms = 14 ms

doWork (4): (10 + 16) ms = 26 ms

doWork (5): (10 + 25) ms = 35 ms

doWork (10): (10 + 100) ms = 110 ms

doWork (15): (10 + 225) ms = 235 ms
methodA(): (10 + 26 + 10*245) ms = 2486 ms
methodB(): (10 + 10*59 + 110) ms = 710 ms
methodCQ): (10 + 235) ms = 245 ms
methodD(): (10 + 14 + 35) ms = 59 ms
doService(): (10 + 2486 + 710) ms = 3206 ms

Now, the execution time of method doService() is 3206 ms. The instrumentation
code adds an overhead of (3206 - 2656) ms = 550 ms which is (550 ms / 2656 ms) =
20.7% of the pure execution time of method doService().

Instrumenting all methods except the method doWork(n), yields a monitoring over-
head less than 10%.

+ doWork(2): 4 ms

+ doWork(4): 16 ms

e doWork(5): 25 ms

* doWork (10): 100 ms

Getting The Data 15

6.2:

(b)

(©)

doWork (15): 225 ms

methodA(): (10 + 16 + 10*235) ms = 2376 ms
methodB(): (10 + 10*39 + 100) ms = 500 ms

» methodCQ): (10 + 225) ms = 235 ms

» methodD(): (10 + 4 + 25) ms = 39 ms

» doService(): (10 + 2376 + 500) ms = 2886 ms

Thus, the monitoring overhead of this instrumentation is (2886 - 2656) ms / 2656 ms =
8.66%.

The components use two different resources (CPU and I/0). Both resources sig-
nificantly contribute to the observed response times (as indicating by the resource
utilization level). It is not possible to determine how much time was spent at which
resource solely based on the observed response times.

The throughput at each component is equal to the system throughput: A4 = Ap =
Ac = A The residence times at each component are (excluding time spend by
waiting for other components): T4 = 58.33ms, Tp = 175ms Tc = 71.43ms. You can
then calculate the per-class utilizations using Equation 6.1: U;p =02, UXO =0.1,
U =06, U)° =03, UT" = 0.3, U’ = 0.5. Using the Service Demand Law, you
finally can determine the resource demands: D;p " =10ms, qu/o =5ms, Dgp " = 30ms,
D}/’ = 15ms, D" = 15ms, D/° = 25ms.

R Ac

Ui = Uj - =
Zd:l Ri- Mg

(6.1)

If the system would not fulfill this relationship, the assumption underlying Equa-
tion 6.1, which requires the observed response time to be proportional to the resource
demand, does not hold because there are several resources contributing to the ob-
served response time. More sophisticated estimation approaches are necessary in
these situations (e.g., using optimization techniques (Liu et al. 2006), or Kalman
filters (Zheng et al. 2008).

7 Answering Design Questions

Answers and Solutions

7.5.1 Answers

7.1: Questions on sizing, scalability, and load balancing are typical design questions
related to performance. Questions on fault tolerance mechanisms, redundancy, design
diversity, effect of physical failure, and directing quality assurance effort are typical design
questions related to reliability. General questions, such as finding optimal configurations,
comparing possible design alternatives, and extending legacy software systems potentially
affect all quality characteristics.

7.2: Approximately 70% of the requests are completed in less than 200 seconds.

7.3: This question is tricky to answer, because the histogram only approximates the
predicted response time distribution. Thus, it is impossible to know what the most
likely response time is, but we can only reason in intervals. What is visible from the
histogram, is, that the response time is more likely in the interval [0,20] seconds than
in any other interval of width 20 seconds, because this interval is the bucket with the
highest probability. The area of the histogram bars approximates the probability of the
respective interval. For more detailed comparisons of the likelihood of intervals, however,
it is easier to interpret the CDF.

7.4: Figure 7.1 shows the assembly contexts of the extended Media Store architecture. Each
assembly contexts refers to a component type in the repository (not shown in the figure).
Often, the assembly context has the same name as the component type it refers to, if
this component type is used just once in the system. For example, the assembly context
MediaManagement in Figure 7.1 refers to the component type MediaManagement in the
repository. In this example, however, there are two assembly contexts that assemble the
AudioWatermarking component type, namely the assembly context called AudioWater-
markingReplicaland the assembly context called AudioWatermarkingReplica2. Figure 7.2
shows the allocation contexts of this Media Store architecture. There is one allocation
context for each assembly context, which is why the allocation context also usually has

Chapter 7

18
IUserManagement g 8]
User UserDB 1UserDB

/40 Management © Adapter C\
/ \‘

\]/J \

IDownload ;
Audio 3] v 2]
Watermarking —G IDBO— DB
$:I | Replical
O WebGUI
IWebGUI

/
(]\ ID?!wnIoad Audio &]

Watermarking

|

|

|

\\ | N Replica2 :

[

\ |
N 4 S
\ Download$:l \ [
\ LoadBalancer \ |
\ L

A
|
I
I
|
|
|
I
I
|
|
|

\
\\ \+J |Bownload IDownload

¥_ Media{l_©_ MediaAoc;*sEl_Q

Management
IMediaManagement IUpload (j\

(j\ IPackaging N
N
N
2]

Packaging

A\ 2]
O— DataStorage

| DataStorage

Figure 7.1: The Media Store System after Adding a Load Balancer

the same name (e.g. allocation context AudioWatermarkingReplica2 in Figure 7.2) as the
assembly context (e.g. assembly context AudioWatermarkingReplica2 in Figure 7.1.

7.5: Software failure potentials, Hardware Failure Potentials, Network Failure Potentials,
and System-external Failure Potentials.

7.6: Software failure potentials are modeled as failure probabilities of internal actions.

Answering Design Questions 19

«ResourceContainer»

Server 1
. «AllocationContext» «AllocationContext»
«Allo\c/?/tég ?BCSIntext» User UserDB
Management Adapter
«AllocationContext» «AllocationContext» .
Download AudioWatermarking «AllocatllgréContext»
LoadBalancer Replical

«AllocationContext» «AllocationContexts

Media MediaAccess
Management
«AllocationContext» «AllocationContext»
Packaging DataStorage

«ResourceContainer»

Server 2 «AllocationContext»

AudioWatermarking
Replica2

Figure 7.2: The Media Store Allocation after Adding a Load Balancer

Hardware failure potentials are annotated to processing resources as mean time to failure
and mean time to repair, from which an availability value can be derived. Network failure
potentials are annotated to linking resources. Finally, System-external failure potentials
can be annotated to required roles of the system.

7.7: The analysis results show the contribution of each service or hardware resource to the
overall failure probability. The largest probability here has the highest failure potential
under the given usage scenario.

20 Chapter 7

7.5.2 Solutions

7.1: The maximum number of users that can be served is exceeded if the response times
are increasing over simulation time. The CPU becomes the bottleneck as it is the only
resource in the system. One solution can be to increase the capacity of the resource that
has the highest utilization to resolve the performance bottleneck.

7.2: One option to further improve the response time is to parallelize the watermarking
of multiple files. For example, as each server has two cores, the AudioWatermarking
component could be updated to start two threads to watermark half of the files each.
Furthermore, the load balancer could split a request with multiple files and send a request
for half of the files to AudioWatermarkingReplical and a request with the other half of
the files to AudioWatermarkingReplica2. Even if this causes the same overall load in the
system (or rather even has some additional overhead for calling more components), this
will better use all available resources for a given request and thus reduce response time
while keeping the same utilization.

7.3: Solve the Palladio model of the design alternative for reliability. The results show
that the probability of failure has increased. The two reasons are that (1) additional
components with failure potential have been added to the system and are used in the
usage scenario and (2) an additional server with failure potential has been added to the
system.

8 Under The Hood

Answers and Solutions

8.6.1 Answers
8.1: The different tools differ in their range of function, result accuracy and analysis
speed.

8.2: Typically, the simulator has a workload generator, simulated users, simulated system
services, and simulated resources.

8.3: The confidence of a single simulation run might be increased by running for a longer
simulation time, however, simulation runs should also be repeated using different random
number seeds.

8.4: In Palladio pseudo-random numbers are used to ensure reproducibility for simulation
runs.

8.5: While ProtoCom is used for the generation of performance prototypes that can
be used to calibrate the models on real hardware, both SimuCom and EventSim are
simulators using only simulated hardware resources.

8.6: Confidence levels can be used to decide a simulation has run sufficiently long.
Background: The longer simulations run, the higher is the confidence in results becomes
because even unlikely execution paths tend to be executed after a long simulation time.
Confidence checks are readily built into the Palladio-Bench.

8.6.2 Solutions

8.1: Imagine you are asked to build an automated design space exploration tool for
Palladio models that works similar to PerOpertyx. Let us assume your tool is already
capable of creating new architectural candidates, but these candidates cannot yet be
evaluated and compared to each other automatically. To avoid reinventing the wheel,
you plan to reuse an existing Palladio analysis tool to evaluate candidates. Consider the
specific requirements of this scenario and decide for a suitable analysis tool.

22

Chapter 8

PS with Processing Rate 10 J

Resource Demands D
in Queue
T=0

/\
\

v

Queue/
/' \

® ®

Waiting Line Server

Arriving Resource AN
Demand

Resource Demands [
are decreased equally

1o

1

Finished Second L
Resource Demand

T=7

Finished First
Resource Demand

N /
T=8 N
N
N
AN

Figure 8.1: Resource demand processing using PS scheduling strategy.

8.2: Consider the scheduling examples from Figure 8.1 and Figure 8.2. If in time step
t = 1 an additional resource demand of 5 arrives right after the demand of 50, when can
we expect this job to be finished under a processor sharing policy? When is the newly
arriving job finished when using a first-come, first-served policy instead?

Under The Hood

FCFS with Processing Rate 10J

Arriving ResourceD
Demand
Resource Demands ™

7

T=0 in Queue T=1 v 7 Remaining A
= \ B < Resource Demand
< ’ > ©
Queve/ !
1 /
o|(¢ ®
Waiting Line Server

Finished First ed Second
Resource Demand Resource Demand
<

T=5.5 N

90O

Figure 8.2: Resource demand processing using FCFS scheduling strategy.

9 Software Engineering Processes

Answers and Solutions

9.4.1 Answers

9.1: Palladio helps during planning, design, implementation, and test. During planing
Palladio serves in reducing estimation risks (e.g. it is realistic to achieve certain quality
goals in a given setting?). During design Palladio assists in the constructive creation and
evaluation of a software design. Implementation is supported by forward engineering
and code stub generation capabilities. Testing is partially supported by comparing
predicted and as-is values (e.g. deviations between predicted and as-is values pointing to
implementation deficiencies or non-understood design effects).

9.2: Existing assets need to be integrated and incorporated into the specification to ensure
a seamless integration of system parts. Without considering existing assets early, the risk
of a late failing integration increases.

9.3: Reusable components can be used in different contexts. Thus they can also be used
in different design alternatives which come up during evolution iterations. For example,
a universal caching component can be used in different iterations of which one might
foresee a single-level caching and another iteration could foresee multi-level caching. All
iterations can share the same reusable component.

9.4.2 Solutions

9.1: Planning: Define the project scope, exclude for example a grade management from
the system scope. Capture the expected amount of planned users. Definition: Capture
functional interfaces. Design: Identify and define components, e.g. the front end for
adding courses and a component to calculate the maximum amount of assigned courses
per student and plan the deployment (e.g. how to distribute the components to servers).
Testing: Check the maximum amount of supported concurrent users of the front end
component. Maintenance: Increase the amount of supported concurrent users by adding
further server hardware and tweaking core algorithms.

10 Relation to Requirements Engineering

Answers and Solutions

10.4.1 Answers

10.1: The different types of requirements for software systems are shown in Figure 10.1.
The main driver for architecture design are quality requirements. Still, all requirements
may influence the architecture design.

10.2: A quality requirement is a requirement that pertains to a quality concern of the
system to be, such as performance, security, or maintainability. In contrast, functional
requirements are requirements concerning primarily the expected behavior in terms of
reaction to given input stimuli and the functions and data required for processing the
stimuli and producing the reaction. Non-functional requirements are a superset of both
quality requirements and constraints. Also note that the terminology is not completely
agreed upon in the requirements engineering community, so you may encounter different
definitions in different sources. In particular, when working on a project, be aware that
co-workers or stakeholders might have a different understanding of what a non-functional
requirement (and a functional requirement) is.

10.3: Quality characteristics are the highest level of distinguishing between different quality
concerns. Examples of quality characteristics are performance, reliability, maintainability,
and usability. Depending on the source, different names are used for the different quality
characteristics (such as efficiency or performance). Quality measures, in contrast, name
more specific and measurable properties of a system. For example, the quality measure
response time refers to the response time property of a system.

10.4: Requirements and architecture are related in two ways: (1) Requirements drive
architectural design, which means that the software architect systematically designs
the architecture to fulfill requirements. (2) Architectural design drives requirements
engineering, which means that architecture design can provide various ways of feedback
into the requirements engineering process.

10.5: Frame: the architecture frames the achievable quality by providing insight into the
associated difficulty, risk, and cost. Constrain: design decisions in the architecture may

28

Requirement

Project
requirement

System
requirement

Process
requirement

Functional Quality .
requirement requirement e
Functionality and Performance Physical
behavior Reliability Legal
Functions Usability Cultural
Data Security Environmental
Stimuli Availability Design &
Reactions Portability Implementation
Behavior Maintainability Interface

Chapter 10

Figure 10.1: Types of Requirements (adapted from (Glinz 2007) according to (Glinz 2011))

Relation to Requirements Engineering 29

limit or even exclude other possible requirements. Inspire: Architectural solutions may
inspire new possibilities and functionality and thus new requirements.

10.6: Palladio can be used to analyze performance, reliability, and costs.

10.4.2 Solutions
10.1:

A. Kind: quality (usability), representation: qualitative

B. Kind: quality (performance), representation: quantitative
C. Kind: functional, representation: operational
D

. Kind: quality (usability), representation: operational

11 Relation to Requirements Engineering

Answers and Solutions

11.4.1 Answers

11.1: Provided roles are mapped to port classes which implement the interfaces associated
by the role.

11.2: Palladio allows for providing (and requiring) the same interface multiple time be the
same component (imagine a component which has clients of the same type connected but
needs to distinguish them). To cope with the potential ambiguity, separate port classes
reflect the individual provided roles.

11.3: The forward engineering purposes are i) simulation of performance, ii) template
generation for performance prediction, and iii) template generation to reduce implemen-
tation effort. The advantage of i) and ii) is the possiblity to The advantage of iii) is that
manual effort of mapping the architecture to code is avoided and that the mapping from
architecture to code is as the intendend mapping.

11.4: SoMoX is able to rapidly generate a software architecture from source code. This
architecture can help, for instance, by i) planing tasks for developer teams, and ii)
predicting the performance of the software system (if combined with the behavior
detection Beagle).

11.5: Static analysis captures semantics of source code by its static semantic, while
dynamic analysis actually executes source code. In order to execute source code for
dynamic analysis, a running resource environment, a ready configuration, representative
data (e.g. in a database), and suitable user input (either manually executed inputs, test
cases or other robots) are required. Hence, in practice dynamic analysis requires more
effort to setup the analysis, e.g. for preparing a distributed system.

11.6: By means of monitoring, source code can be precisely observed for certain use cases.
The actual source code execution becomes visible and true performance and reliability
issue might be observed. Hence, performance properties are much easier to grap using

32 Chapter 11

dynamic analysis while static analysis is suitable for the static architecture. Dynamic
analysis can easily limit its scope by just executing use cases of interest (e.g. the effects of
inserting a single record in the Media Store frontend).

11.7: Interface violations (i.e. class-level communication of different components which
bypasses component interfaces) harms the quality of component architectures. If interfaces
are bypassed, programmers can hardly rely on certain communication paths which
increases effort for understanding and maintaining systems. Exchanging a component’s
implementation becomes labour-intensive manual work since a possibly bypassing
communication has to be individually handled.

11.8: ArchiMetrix supports reverse engineering by finding deficiencies in the source code.
If it is executed iteratively the result of the reverse engineering will be improved. Since
ArchiMetrix points out the deficiencies automatically, but not automatically repairs the
source code it can be considered as a semi-automatically approach.

11.4.2 Solutions
11.1: The solution for Java source code is provided on the accompanying book’s website.

11.2: The classes that can communicate directly to each other are: MediaAdapterImpl and
DB Manager as well as DB Manager and Audio. All other classes communicate which
each other through interfaces.

11.3: A screencast how to execute SimuCom and ProtoCom and the result of the execution
is provided on the accompanying book’s website.

11.4: Palladio currently supports mappings to POJOs, E]B, and different Cloud environ-
ments. The main difference, e.g., between POJOs and the other concepts is that POJOs
are not using any other concept other than pure Java.

11 Bibliography

Glinz, Martin. A Glossary of Requirements Engineering Terminology. Standard Glossary for the
Certified Professional for Requirements Engineering (CPRE) Studies and Exam. Tech. rep.
available online. International Requirements Engineering Board, 2011.

— “On Non-Functional Requirements”. In: Requirements Engineering Conference, 2007. RE
'07. 15th IEEE International. IEEE Computer Society, 2007, pp. 21-26.

Jansen, Anton and Jan Bosch. “Software Architecture as a Set of Architectural Design
Decisions”. In: 5th Working IEEE/IFIP Conference on Software Architecture (WICSA’05).
Ieee, 2005, pp. 109-120.

Liu, Zhen et al. “Parameter inference of queueing models for IT systems using end-to-end
measurements”. In: Performance Evaluation 63.1 (2006), pp. 36—60.

Rhinelander, Richard. “Components have no Interfaces!” In: Proceedings of the 12th
International Workshop on Component Oriented Programming (WCOP 2007). Vol. 2007-13.
Interne Berichte. Karlsruhe, Germany: Universitdt Karlsruhe, Fakultit fiir Informatik,
2007.

Zheng, Tao, C.M. Woodside, and M. Litoiu. “Performance Model Estimation and Tracking
Using Optimal Filters”. In: IEEE Transactions on Software Engineering 34.3 (May 2008),
pp- 391-406.

	Architectural Viewpoints
	Answers
	Solutions

	Architectural Reuse
	Answers
	Solutions

	Modeling Quality
	Answers
	Solutions

	Getting The Data
	Answers
	Solutions

	Answering Design Questions
	Answers
	Solutions

	Under The Hood
	Answers
	Solutions

	Software Engineering Processes
	Answers
	Solutions

	Relation to Requirements Engineering
	Answers
	Solutions

	Relation to Requirements Engineering
	Answers
	Solutions

