
Koziolek, Happe, Becker, Reussner, Palladio Component Model

1

Evaluating Performance of Software Architecture Models

with the Palladio Component Model

Heiko Koziolek, Jens Happe

Uhlhornsweg, D-26111 Oldenburg, Germany,

heiko.koziolek@informatik.uni-oldenburg.de

jens.happe@informatik.uni-oldenburg.de

Steffen Becker, Ralf Reussner

Am Fasanengarten 5a, D-76137 Karlsruhe, Germany,

sbecker@ipd.uka.de

reussner@ipd.uka.de

Abstract

Techniques from model-driven software development are useful to analyse the

performance of a software architecture during early development stages. Design

models of software models can be transformed into analytical or simulation

models, which enable analyzing the response times, throughput, and resource

utilization of a system before starting the implementation. This chapter provides

an overview of the Palladio Component Model (PCM), a special modeling

language targeted at model-driven performance predictions. The PCM is

accompanied by several model transformations, which derive stochastic regular

expressions, queuing network models, or Java source code from a software

design model. Software architects can use the results of the analytical models to

evaluate the feasibility of performance requirements, identify performance

bottlenecks, and support architectural design decisions quantitatively. The

chapter provides a case study with a component-based software architecture to

illustrate the performance prediction process.

mailto:heiko.koziolek@informatik.uni-oldenburg.de
mailto:jens.happe@informatik.uni-oldenburg.de
mailto:sbecker@ipd.uka.de
mailto:reussner@ipd.uka.de

Koziolek, Happe, Becker, Reussner, Palladio Component Model

2

1. Introduction (1 Page)

To ensure the quality of a software model, developers need not only to check its

functional properties, but also assure that extra-functional requirements of the

system can be fulfilled in an implementation of the model. Extra-functional

properties include performance, reliability, availability, security, safety,

maintainability, portability, etc. Like functional correctness, these properties

need to be addressed already during early development stages at the model level

to avoid possible later costs for redesign and reimplementation.

Performance (i.e., response time, throughput, and resource utilization) is an

extra-functional property critical for many business information systems. Web-

based information systems rely on fast response times and must be capable of

serve thousands of users in a short time span due to the competitive nature of

internet businesses. Furthermore, the responsiveness of software used within

companies is important to ensure efficient business processes.

Performance problems in large distributed systems can sometimes not be solved

by adding more servers with improved efficiently hardware (“kill it with iron”).

Large software architectures often do not scale linearly with the available

resources, but instead include performance bottlenecks that limit the impact of

additional hardware.

Therefore, it is necessary to design a software architecture carefully and analyse

performance issues as early as possible. However, in the software industry,

performance investigations of software systems are often deferred until an

implementation of the system has been build and measurements can be

conducted (“fix it later”). To avoid this approach, which might lead to

expensive redesigns, software architects can use performance models for early,

pre-implementation performance analysis of their architectures.

This chapter provides an overview of the Palladio Component Model (PCM), a

domain specific modelling language for component-based software

architectures, which is specifically tuned to enable early life-cycle performance

predictions. Different developer roles can use the PCM to model the software

design and its targeted resource environment. The models can be fed into

performance analysis tools to derive response time, throughput, and resource

utilization for different usage scenarios. Software architects can use this

information to revise their architectures and quantitatively support their design

decisions at the architectural level.

The chapter is structured as follows: Section 2 provides background and

describes related work in the area of model-driven performance prediction.

Section 3 introduces different developer roles and a process model for model-

driven performance predictions. Section 4 gives an overview of the PCM with

several artificial model examples, before Section 5 briefly surveys different

model transformations to analysis models and source code. Section 6 describes

Koziolek, Happe, Becker, Reussner, Palladio Component Model

3

the performance prediction for an example component-based software

architecture and discusses the value of the results for a software architect. For

researchers interested working in the area of model-driven performance

prediction, Section 7 highlights some directions for future research. Section 8

concludes the chapter.

2. Background & Related Work (2 Pages)

Model-driven performance predictions aim at improving the quality of software

architectures during early development stages (Smith et al., (2002)). Software

architects use models of such prediction approaches to evaluate the response

time, throughput, or resource utilization to be expected after implementing their

envisioned design. The prediction model’s evaluation results enable analysing

different architectural designs and validate extra-functional requirements (such

as a maximum response time or a minimum throughput) of software systems.

The advantage of using prediction models instead of implementation testing is

the lowered risk to find performance problems in already implemented systems,

which require cost-intensive redesigns.

Researchers have put much effort into creating accurate performance prediction

models for the last 30 years. Queuing networks, stochastic process algebras, and

stochastic Petri nets are the most prominent prediction models from the research

community. However, practitioners seldom apply these models due to their

complexity and high learning curve. Therefore, focus of the research

community has shifted to create more developer-friendly models and use model

transformations to bridge the semantic gap to the above mentioned analytical

models.

From the more than 20 approaches in this direction during the last decade

(Balsamo et al., (2004)), most use annotated UML models as a design model

and ad-hoc transformations to create (layered) queuing networks as analytical

models. Tools shall encapsulate the transformation to the analytical models and

their solution algorithms to limit the necessary additional skills for designers.

For these approaches, the Object Management Group (OMG) has published

multiple UML profiles (SPT, QoS/FT, MARTE) to add performance-related

annotations to UML models. However, these profiles remain under revision, are

still immature, and are still not known to have been used in practise in a broader

scope.

Component-based software engineering (CBSE) adds a new dimension to

model-driven performance prediction approaches. CBSE originally targeted at

improved reusability, more flexibility, cost-saving, and shorter time-to-market

of software systems. Besides these advantages, CBSE might also ease

prediction of extra-functional properties. Software developers may test

components for reuse more thoroughly and provide them with more detailed

Koziolek, Happe, Becker, Reussner, Palladio Component Model

4

specifications. These specifications may contain performance-related

information.

Hence, several research approaches have tackled the challenge of specifying the

performance of a software component (cf. survey by Becker et al., (2006)). This

is a difficult task, as the performance of a component depends on environmental

factors, which can and should not be known by component developers in

advance. These factors include:

 Execution Environment: the platform a component is deployed on

including component container, application server, virtual machine,

operating system, software resources, hardware resources

 Usage Profile: user inputs to component services and the overall

number of user requests directed at the components

 Required Services: execution times of additionally required, external

services, which add up to the execution of the component itself

Component developer can only fix the component’s implementation, but have

to provide a performance specification, which is parameterisable for the

execution environment, the usage profile, and the performance of required

services. The following paragraph summarises some of the approaches into this

direction.

Sitaraman et. al (2001) model the performance of components with an extension

to the O-calculus, but do not include calls to required services. Hissam et. al

(2002) aim at providing methods to certify component for their performance

properties. Bertolino et. al (2003) use the UML-SPT profile to model

component-based systems. They explicitly include dependencies to the

execution environment, but neglect influences by the usage profile. Hamlet et

al. (2003) investigate the influence of the usage profile on component

performance. Wu et al. (2004) model components with an XML-based language

and transform this notation into layered queueing networks. The APPEAR

method by Eskenazi et al. (2004) aims at predicting performance for changes on

already built systems, and thus does neglect the influence of the execution

environment. Bondarev et al. (2005) target components in embedded systems

with their ROBOCOP model. Grassi et al. (2005) develop an intermediate

modelling language for component-based systems called KLAPER, which

shall bridge the gap between different design and analytical models.

The Palladio Component Model (Becker et al., (2007)) described in this chapter

is in line with these research approaches and tries to reflect all influences on

component performance. Unlike some of the above listed approaches, the PCM

does not use annotated UML as design model, but defines its own metamodel.

This reduces the model to concepts necessary for performance prediction and

does not introduce the high complexity of arbitrary UML models with a variety

of concepts and views.

Koziolek, Happe, Becker, Reussner, Palladio Component Model

5

3. Developer Roles and Process Model (2 Pages)

The PCM metamodel is divided into several domain-specific modelling

languages, which are aligned with developer roles in CBSE. This section

introduces these roles and provides an overview of the process model for using

the PCM.

An advantage of CBSE is the division of work between different developer

roles, such as component developers and software architects. Component

developers specify and implement components. They also have to provide a

description of the component’s extra-functional properties to enable software

architects to predict their performance without deploying and testing them.

Software architects compose components from different component developers

to application architectures. They are supported by tools to predict the

architecture’s performance based on the performance specifications of the

component developers. With the predicted performance metrics, they can

support their design decisions for different architectural styles or components.

For performance predictions, the software architect needs additional

information about the execution environment and the usage profile. The role of

the system deployer provides performance-related information about the

hardware/software environment of the architecture (such as speed of a CPU,

throughput of a network link, scheduling policies of the operating system,

configuration of the application server, etc.). Business domain experts mainly

possess knowledge about the anticipated user behavior (in terms of input

parameters and call frequencies), and must assists software architects in

specifying an usage model of the architecture.

Figure 1 depicts the overall development process of a component-based system

including performance prediction (Koziolek et al. (2006)).

Requirements

Specification QoS-Analysis Provisioning Assembly

Test

Deployment

Business Concept

Model

Use Case

Models

QoS

Results Component Specs &

Architecture

Business

Requirements

Existing Assets

Technical Constraints Components

Use Case

Models

Applications

Tested

Applications

Deployment

Diagrams

Legend

Workflow

Change of Activity

Flow of Artifact

Figure 1: Component-based Development Process

Koziolek, Happe, Becker, Reussner, Palladio Component Model

6

Boxes model workflows, thick, grey arrows indicate a change of activity, and

thin, black arrows illustrate the flow of artifacts. The workflows do not have to

be traversed linearly; backward steps for revision are likely. After collecting and

analysing requirements for the system to develop (Requirements), the software

architect specifies components and the architecture based on input by

component developers (Specification). With a fully specified architecture,

performance predictions can be carried out by tools (QoS-analysis). The

software architect can use the results to alter the specification or decide to

implement the architecture. This is done either by obtaining existing

components from third-party vendors or by implementing them according to

their specification (Provisioning). Afterwards, the software architect can

compose the component implementations (Assembly), test the full application

in a restricted environment (Test), and then install and operate it in the

customer’s actual environment (Deployment).

Usage Model

Component Specifications

<<User>>

Assembly Model

Allocation Model

<<Component

Developer>>

part of

part of

part
of

p
a
rt
 o

f

<<System

Architect>>

<<System

Deployer>>

<<Domain

Expert>>

PCM

Instance

M
2M

Stochastic Regular Expressions

Queueing Network Model

Performance Prototype

Java Code Skeletons

M
2M

M2T

M
2
T

Figure 2: Specification and QoS Analysis with the PCM

During “Specification”, the above introduced roles interact as follows (cf.

Figure 2): The PCM provides a domain-specific modelling language for each

developer role, which is restricted to concepts known to this role. Component

developers model performance-related component behaviour, software

architects add an assembly model. System deployers model hardware/software

resources and the components’ allocation to these resources. Finally, domain

experts provide a usage model. All specifications can be combined to derive a

full PCM instance. Section 4 will elaborate on the PCM’s specification

languages.

During “QoS-Analysis”, this model can be transformed into different analysis

models, such as stochastic regular expressions or a queueing network. These

Koziolek, Happe, Becker, Reussner, Palladio Component Model

7

models provide capabilities to derive performance metrics such as response

times, throughputs, or resource utilisations for specific usage scenarios.

Additionally, the PCM can be transformed into a performance prototype, which

simulates the specified resource demands. This prototype enables pre-

implementation performance measurements on the target platform. Finally, the

PCM instance can be converted into Java code skeletons via Model2Text

transformation, as a starting point for implementing the system’s business logic.

Section 5 describes the analysis models and code transformations in more

detail.

4. Overview Palladio Component Model (10 Pages)

This section provides an overview of the modeling capabilities of the PCM to

describe component-based software architecture. The PCM is a metamodel

specified in EMF/Ecore. The following section will mainly use examples to

introduce the concepts, and does not go into technical details of the metamodel,

which the reader can find in (Reussner et al., 2007). The description of the PCM

in this section is structured along the developer roles and their domain-specific

languages.

4.1 Component Developer (6 Pages)

Component developers specify the functional and extra-functional properties of

their components. They put the specification as well as the implementation in

repositories, where software architects can retrieve them. This section will first

introduce all entities, which can be stored in repositories and then focus on

service effect specifications, which model the abstract behavior and

performance properties of component services.

4.1.1 Component Repositories

Figure 3 shows an example PCM repository, which includes all types of entities

that can be specified. First class entities in PCM repositories are interfaces, data

types, and components. They may exist on their own and do not depend on

other entities.

The interface MyInterface is depicted on the upper left in Figure 3. It is not yet

bound to a component, but can be associated as a provided or required interface

to components. An example of interfaces existing without clients and an

implementation in practice was the Java Security API, which had been specified

by Sun before an implementation was available. Interfaces in the PCM contain a

list of service signatures, whose syntax is based on CORBA IDL. Additionally,

component developers may supplement an interface with protocols, which

restrict the order of calling its services. For example, an I/O interface might

force clients to first open a file (call service open()) before reading from it (call

service read()).

Koziolek, Happe, Becker, Reussner, Palladio Component Model

8

Components may provide or require interfaces. The binding between a

component and an interface is called “provided role” or “required role” in the

PCM. For example, component A in Figure 3 is bound to YourInterface in a

provided role. This means that the component includes an implementation for

each of the services declared in the interface. Other components, which are

bound to a compliant interface in a required role can use component A to

execute these services.

<<Repository>>

<<CompositeComponent>>

E

<<Basic

Component>>

F

<<Composite

Component>>

G

<<Implementation

ComponentType>>

D

<<Provided

ComponentType>>

B

<<Complete

ComponentType>>

C

<<Basic

Component>>

H

<<Delegation

Connector>>

<<Assembly

Connector>>

<<ProvidedRole>>

<<RequiredRole>>

<<Delegation

Connector>>

<<Interface>>

MyInterface

void method1(Object par)

Object method2()

<<PrimitiveDataType>>

type = „INT“

<<CollectionDataType>>

name = „INT-ARRAY“

innerType = „INT“

<<Provided

Interface>>

<<Required

Interface>>

<<Basic

Component>>

A

<<Interface>>

YourInterface

INT method3()

void method4()

<<ServiceEffectSpecification>>

<<ExternalCallAction>>

method1

<<InternalAction>>

doSomething

<<BasicComponent>>

I

<<ProvidedRole>>
<<RequiredRole>>

Figure 3: Example Component Repository

Koziolek, Happe, Becker, Reussner, Palladio Component Model

9

Repositories need common data types, so that the service signatures refer to

standardized types (e.g., INT, FLOAT, CHAR, BOOL, STRING, etc.). In the

PCM, data types are either primitive types, collection types, or composite types

(composed out of inner types). Figure 3 contains a primitive data type INT and

a collection data type INT-Array, which contains INTs as inner elements.

The PCM supports modeling different types of components to a) reflect

different development stages, and b) to differentiate between basic (atomic)

components and composite components.

Different development stages are reflected by provided, complete, and

implementation component type. Component developers can refine components

during design from provided to implementation component types.

Provided component types (component B in Figure 3) only provide one or more

interfaces, but include no mandatory required interfaces. Component developers

can use these type of components early during the development, when they

know that a certain functionality has to be provided, but do not know whether

other components are needed to provide this functionality.

Complete component types (component C in Figure 3) are provided component

types, but additionally may contain mandatory required interfaces. However, the

inner dependencies between provided and required interfaces are not fixed in

complete component types, as different implementations can lead to different

dependencies. Within a component architecture, a software architect may easily

replace one component with another component, which conforms to the same

complete component type, without affecting the system’s functionality.

Implementation component types (component D in Figure 3) are complete

component types, but additionally contain fixed inner dependencies between

provided and required interfaces. Replacing implementation component types in

an architecture ensures not only signature but also protocol compatibility at the

required interface.

Implementation component types are either basic or composite components.

Component E in Figure 3 is a composite component. It contains several inner

components (F, G, H). Inner component may again be composite components

(G) to build up arbitrary hierarchies. Assembly connectors bind the roles of

inner components. Delegation connectors connect provided roles of composite

components with provided roles of inner components, or required roles of

composite components with required roles of inner components. From the

outside, composite components look like basic components, as they provide and

require services. The inner structure of a composite component should only be

known to the component developer, but not to the software architect, who shall

use the component as a unit and treat it the same as other components.

Finally, basic components are “standard” components, which cannot be further

decomposed. They may contain a mapping for each provided service to required

services, which is called resource demanding service effect specification.

Koziolek, Happe, Becker, Reussner, Palladio Component Model

10

4.1.2 Service Effect Specification

Resource demanding service effect specifications (RDSEFF) provide means to

describe resource demands and calls to required services by a provided

component service. Component developers use RDSEFFs to specify the

performance of their components.

RDSEFFs reflect the environmental factors on component performance

introduced in Section 2. They are parameterisable for external services,

execution environment, usage profile, and component implementation as

described in the following subsection.

RDSEFFs abstractly model the externally observable behavior of a component

service. They only refer to method signatures and parameters that are declared

in the interfaces and add control flow between calls to required services,

parametric dependencies, and resource usage. These specifications do not reveal

any additional knowledge about the algorithms used to implement the service’s

functionality and thus retain the black-box principle.

void A.do(File input1,

 int input2,

 List input3){

 X.method1();

 // internal method

 input4 =

 innerMethod(input1);

 if (input2>=0)

 for (item : input3)

 Y.method2();

 else

 Z.method3(input4);

}

A

X

Y

Z

<<ExternalCallAction>>

method1

<<ExternalCallAction>>

method2

<<ExternalCallAction>>

method3

<<InternalAction>>

innerMethod

<<ResourceDemanding

ServiceEffectSpecification>>

<<GuardedBranch>>

Specification =

P(input2.VALUE<0)

<<GuardedBranch>>

Specification =

P(input2.VALUE>=0)

<<LoopAction>>

Iterations =

input3.ELEMENTS

<<VariableUsage>>

ReferenceName = zInput

Type = BYTESIZE

Specification =

input1.BYTESIZE / 2

<<Parametric

ResourceDemand>>

Specification = 1000 +

input1.BYTESIZE * 25

Unit = CPU cycles

Figure 4: Resource Demanding Service Effect Specification

Consider the artifical example in Figure 4 for a brief introduction into

RDSEFFs. Component A invokes required functionality via its required X,Y,

Koziolek, Happe, Becker, Reussner, Palladio Component Model

11

and Z. It provides a service called “do”, whose source code is sketched in

Figure 4. The service first calls a service from interface X, and then executes

some internal code processing parameter “input1”. Afterwards, depending on

“input2”, either services from interface Y or Z are called. “method2” from

interface Y is located within a loop, whose number of iteration depends on the

array length of “input3”.

The corresponding RDSEFF for service “do” is located on the right hand side in

Figure 4. As a graphical, concrete syntax, the illustration uses the UML activity

diagram notation. However, in this case, the metamodel underlying the

modeling constructs is not the UML metamodel, but the PCM, which is

indicated by stereotypes (within << >>). In the following, the underlying

concepts for control flow, resource demands, and parametric dependencies will

be described.

Control Flow: Actions in RDSEFFs can either be internal actions (i.e., the

component executes some internal code) or external call actions (i.e., the

component calls a service declared in its required interface). The order of these

actions may influence performance properties of the service, because different

services may concurrently use the same resources or synchronize each other,

which induces delays for waiting. Hence, RDSEFF offer as basic control flow

constructs sequences, alternatives, loops, and parallel executions (forks).

Alternatives or branches split the control flow with an XOR semantic, while

forks (not depicted in Figure 4) split the control flow with an AND semantic,

i.e., all following actions are executed concurrently. Loops have to specify the

number of iterations, so that the execution times for actions within the loop can

be added up a limited number of times.

Notice that the control flow in RDSEFFs is an abstraction from the actual inner

control flow of the service. Internal actions potentially summarize a large

number of inner computations and control flow constructs, which do not contain

calls to required services.

Resource Demands: Besides external services, a component service accesses

the resources of the execution environment it is deployed in. Ideally, component

developers would provide measured execution times for these resource accesses

in the RDSEFF. However, these measured times would be useless for software

architects, who want to use the component, because their hardware/software

environment can be vastly different from the component developer ones. The

execution times of the service could be much faster or slower in the software

architect’s environment.

Therefore, component developers specify resource demands in RDSEFFs

against abstract resource types such as a CPU or hard disk. For example they

can provide the number of CPU cycles needed for execution or the number of

bytes read from or written to a hard disk. The resource environment model

supplied by the system deployer (Section 4.3) then contains execution times for

Koziolek, Happe, Becker, Reussner, Palladio Component Model

12

executing CPU cycles or reading a byte from hard disk. These values can be

used to calculate the actual execution times of the resource demands supplied by

the component developers. As an example, the “ParametricResourceDemand”

on the internal action “method1” in Figure 4 specifies that the service needs

1000 CPU cycles plus the amount of a parametric dependency (described

below) to execute.

In addition to active resources, such as processors, storage devices, and network

devices, component services may also acquire and release passive resources,

such as threads, semaphores, database connections etc. Passive resources are not

capable of processing requests and usually exist only a limited number of times.

A service can only continue its execution, if at least one of them is available.

Acquisition and release of passive resources is not depicted in Figure 4.

Parametric Dependencies: To include the influence of the usage profile into

the RDSEFF, component developers can specify parametric dependencies.

When specifying an RDSEFF, component developers cannot know how the

component will be used by third parties. Thus they cannot fix resource

demands, branching probabilities or the number of loop iterations if those

values depend on input parameters. Hence, RDSEFFs allow specifying

dependencies to input parameters.

There are several forms of these dependencies. For example, in Figure 4, the

resource demand of the internal action “innerMethod” depends on byte size of

input parameter “input1” (e.g., because the method processes the file byte-

wise). Once the domain expert characterizes the actual size of this parameter

(cf. Section 4.4), this value can be used to calculate the internal action’s actual

resource demand.

Furthermore, branching probabilities are needed for the alternative execution

paths in this RDSEFF. These probabilities are however not fixed, but depend on

the value of input parameter “input2”. Therefore, the RDSEFF includes no

branching probabilities but guards (i.e., Boolean expressions) on the branches.

Once the domain expert characterizes the possible values of “input2” and

provides probabilities for the input domains “input2<=0” and “input2>0”, these

values can be mapped to the branching probabilities.

The RDSEFF in Figure 4 also contains a parametric dependency on the number

of loop iterations surrounding the external call to “method2” of component Y.

Loop iterations can be fixed in the code, but sometimes they depend on input

parameters. In this case the service iterates over the list “input3” and calls the

external service for each of its elements. The RDSEFF specifies this

dependency as the component developer cannot know in advance the lengths of

the lists.

Finally, the service “do” executes the external call to “method3” in Figure 4

with an input parameter that in turn depends on an input parameter of the

service itself. The service processes “input1”, assigns it to a local variable

Koziolek, Happe, Becker, Reussner, Palladio Component Model

13

“input4”, and then forwards it to interface Z via “method3”. While processing

“input1”, the service “do” reduces its byte size by 50% (“input1.BYTESIZE /

2”). The RDSEFF includes the specification of this dependency. Once the

domain expert specifies the actual byte size of “input1”, the byte size of the

input parameter of “method3” can be calculated.

4.2 Software Architect (1 Page)

Software architects retrieve components (including their RDSEFFs) from

repositories and compose them to architectures. They can use several

component instances of the same type in an architecture at different places.

Hence, in the PCM, software architects put component instances in so called

assembly contexts, which are representations of a single component instance

and its connected provided and required roles.

<<System>>

A

<<SystemProvidedRole>> <<SystemRequiredRole>>

B

C

<<AssemblyContext>>

A
D

<<SystemDelegationConnector>>

<<SystemAssemblyConnector>> <<SystemDelegationConnector>>

<<AssemblyContext>>

<<AssemblyContext>>
<<AssemblyContext>>

<<AssemblyContext>>

Figure 5: System Example

Software architects bind the roles of components in assembly contexts with

system assembly connectors, as illustrated in the example in Figure 5. Notice

that the component type A is used in two assembly contexts in this example

(once connected with component B and once connected with components C and

D).

A set of connected assembly contexts is called assembly. An assembly is part of

a system, which additionally exposes system provided roles and system required

roles (cf. Figure 5). System delegation connectors bind these system roles with

roles of the system’s inner components. Domain experts later use system

provided roles to model the usage of the system (Section 4.4). System required

roles model external services, which the software architect does not consider

Koziolek, Happe, Becker, Reussner, Palladio Component Model

14

part of the architecture. For example, the software architect can decide to model

a web service or a connected database as system external services.

There is a distinction between composite components and systems. For software

architects and system deployers, but not for component developers, composite

components hide their inner structure and the fact that they are composed from

other components. The inner structure is an implementation detail and its

exposure would violate the information hiding principle of components.

Opposed to this, the structure of assemblies is visible to software architects and

system deployers. Therefore, system deployers can allocate each component in

a system to a different resource. However, they cannot allocate inner

components of composite components to different resources, because these stay

hidden from them at the architectural level.

4.3 System Deployer (1 Page)

System deployers first specify the system’s resource environment and then

allocate assembly contexts (i.e., connected component instances) to resources.

In resource environments, resource containers group resources. For example, in

Figure 6, the resource container “Server1” contains a CPU, a hard disk, and a

database connection pool. The PCM differentiates between processing

resources, which can execute requests (e.g., CPU, hard disk, memory), and

passive resources, which cannot execute requests, but only be acquired and

released (e.g., threads, semaphores, database connections).

<<System>>

A B

<<AssemblyContext>><<AssemblyContext>>

<<AllocationContext>>

<<LinkingResource>>

processingRate = 100 Mbit/s

<<ResourceContainer>>

Server1

<<ResourceContainer>>

Server2

<<Processing

Resource

Specification>>

CPU

processingRate =

3*10^9 cycles/s

<<Processing

Resource

Specification>>

Hard Disk

processingRate =

15.5 MB/s

<<Passive

Resource

Specification>>

DatabaseConnect

capacity = 30

<<Processing

Resource

Specification>>

CPU

processingRate =

2.2*10^9 cycles/s

<<Passive

Resource

Specification>>

ThreadPool

capacity = 8

Figure 6: Resource Environment and Allocation

Koziolek, Happe, Becker, Reussner, Palladio Component Model

15

Processing resources specify a processing rate, which can be used to convert the

resource demands in RDSEFFs into timing values. Passive resources specify a

capacity. If a component acquires a passive resource, its amount of available

units (i.e., its capacity) decreases. Once the capacity reaches zero, further

components requesting the passive resource must wait until other services

release it again. Linking resources connect resource containers and are

themselves special processing resources.

System deployers use allocation contexts to specify that a resource container

executes an assembly context. In Figure 6, the system deployer has allocated

component A’s assembly context to “Sever1” and component B’s assembly

context to “Server2”.

System deployers can specify different resource environments and different

allocation contexts to answer sizing questions. The PCM’s resource model is

still limited to abstract hardware resources. We will extend it in the future with

middleware parameter, operating system settings, and scheduling policies.

4.4 Domain Expert (1 Page)

Domain experts create a usage model that characterizes user behavior and

connects to system provided roles. In the example in Figure 7, users first log in

to the system, then either browse or search, then buy an item, and finally log

out. All actions target system provided roles (i.e., services exposed by the

system, cf. Section 4.2).

<<SystemCallAction>>

Login

<<SystemCallAction>>

Search

<<SystemCallAction>>

Browse

<<SystemCallAction>>

BuyItem

<<SystemCallAction>>

Logout

<<UsageModel>>

<<BranchTransition>>

Probability=0.6

<<BranchTransition>>

Probability=0.4

<<ClosedWorkload>>

Population= 15 users

Think time = 1 second

<<LoopAction>>

Iterations = 3

<<VariableCharacterisation>>

ReferenceName = „category“

Specification = 5

Figure 7: Usage Model Example

Domain experts can specify user behavior with control flow constructs such as

sequence, alternative, and loop. They must specify branching probabilities for

alternatives and the number of iterations for loops.

Koziolek, Happe, Becker, Reussner, Palladio Component Model

16

Additionally, domain experts specify the user workload. Workloads are either

closed or open. Closed workloads specify a fixed number of users (population)

circulating in the system. In Figure 7, the domain expert has specified a closed

workload with 15 users, which perform the specified actions and then re-enter

the system after a think time of 1 second. Open workloads specify a user arrival

rate (e.g., 5 users/second), and do not limit the number of users in the system.

The PCM usage model also enables domain experts to characterize the

parameter values of users. In Figure 7, variable “category” of action browse has

been characterized with a constant (5) meaning that users always browse in the

category with id number 5. Besides constants, the usage model offers specifying

probability distribution functions over the input domain of a parameter, so that

domain experts can provide a fine-grained stochastic characterization of the

user’s input parameters. The reader may find details in Reussner et al. (2007).

4.5 Tool Support (1 Page)

We have implemented an Eclipse-based open-source tool called “PCM-Bench”,

which enables software developers to create instances of the PCM metamodel

and run performance analyses (cf. Figure 8). The tool offers a different view

perspective for each of the four developer roles and provides graphical model

editors. The PCM-Bench is an Eclipse RCP application and its editors have

been partially generated from the PCM Ecore metamodel with help of the

Graphical Modelling Framework (GMF).

Figure 8: Screenshot PCM-Bench

Koziolek, Happe, Becker, Reussner, Palladio Component Model

17

The graphical editors provide an intuitive way of modeling component-based

architectures analogous to UML modeling tools. They offer model validation by

checking OCL-constraints. The PCM-Bench visualizes violated constraints

directly in the model diagrams. The editors support entering performance

annotations with special input masks that offer syntax highlighting and code

completion. Model instances can be serialized to XMI-files.

Besides graphical editors, the PCM-Bench is a front-end for the performance

analysis techniques described in Section 5. Software architects can configure

and run simulations. They can retrieve different performance metrics such as

response times for use cases, throughputs, and resource utilizations. The PCM-

Bench visualizes probability distribution functions of response times as

histograms and provides standard statistical values such as mean, median,

standard deviation etc. Furthermore, the PCM-Bench supports Model-to-Text

transformations to generate Java code from PCM instances.

5. Model Transformation and Prediction Methods (5 Pages)

The PCM offers different performance evaluation techniques, which are still

subject to research. For analyzing use cases without concurrency, a PCM

instance can be transformed into a stochastic regular expression (SRE), which

offers a fast way of predicting response times in presence of resource demands

specified as general distribution functions (Section 5.1). For cases with multiple

users, a PCM instance can be transformed into a queuing network based

simulation model (Section 5.2). The simulation model is less restricted than the

SREs, but its execution is usually more time consuming than solving the SREs.

Finally, there are transformations to derive Java code skeletons from a PCM

instance, to provide a starting point for implementing the modeled architecture

(Section 5.3).

5.1 Stochastic Regular Expressions (1 Page)

To transform a PCM instance into a SRE, tools first solve the parametric

dependencies within the SEFFs. The tools use the parameter characterizations

provided by the domain expert in the usage model to transform parametric

resource demands to resource demands, guards on branches to probabilities, and

parameter dependent loop iteration specifications into iteration numbers.

Afterwards, the transformation into SREs is straightforward (Koziolek et. al

(2007a)). The following briefly describes the syntax, semantics, and

calculations with SREs, which derive response times for use cases as

probability density functions.

The syntax of SREs is specified as follows (BNF): P := a | P Q | P + Q | P*
(l)

,

where “a” denotes a symbol containing a random variable Xa for an execution

time, “P Q” denotes a sequence, “P + Q” denotes an alternative with

probabilities and 1-, and P*
l(n)

 denotes a loop.

Koziolek, Happe, Becker, Reussner, Palladio Component Model

18

An independent and identically distributed probability density function (PDF)

fa(t) characterizes the execution time of random variable Xa.

The execution time of a sequence of two expressions “P Q” is the sum of the

random variables XP Q=XP + XQ, whose distribution is determined by the

convolution of their PDFs: fP Q(t) = fp(t) (*) fQ(t).

For the alternative “P + Q” with probabilities and 1-, the resulting PDF is

the weighted (by branching probabilities) sum of the expressions’ PDFs: fP +

Q(t) = fp(t) + 1- fQ(t).

The execution time of a loop P*
l(n)

 depends on the number of loop iterations,

which is specified by a probability mass function (PMF) pl(i) = Pl(X = i)

denoting the probability that expression P is executed i times. The PDF of a

loop is computed by a weighted convolution: f P*l(n)(t) = pl(i) (* fp) (t).

These basic constructs are sufficient to derive the PDF of a response time of a

complete use case if no concurrent behavior is executed. We use Fast Fourier

Transformation to efficiently calculate the convolution of density functions. The

SRE metamodel is, like the PCM metamodel, specified in Ecore. So far, we

have implemented the model-to-model transformation from a PCM instance to a

SRE instance in Java. For the future, we plan a QVT-based transformation. The

reader may find details of SREs and their underlying assumptions in Koziolek

et al. (2007).

5.2 Queuing Network Simulation (1 Page)

Many performance analysis methods use queuing networks as underlying

prediction models because of their capability to analyze concurrent system

interactions. Queuing models contain a network of service centers with waiting

queues which process jobs moving through the network. When applying

queuing networks in performance predictions with the PCM, some of the

commonly used assumptions need to be dropped. As the PCM uses arbitrary

distribution functions for the random variables, generalized distributed service

center service times, arrival rates, etc. occur in the model. Additionally, the

requests travel through the queuing network according to the control flow

specified in the RDSEFF. In contrast, common queuing networks assume

probabilistic movement of the jobs in the network. As a result, only simulation

approaches exist, which solve such models.

Hence, we use a model-to-text transformation to generate Java code realizing a

custom queuing network simulation based on the simulation framework Desmo-

J. The simulation generates service centers and their queues for each active

resource. Passive resources are mapped on semaphores initialized with the

resource’s capacity. The transformation generates Java classes for the

components and their assembly. Service implementations reflect their respective

SEFF.

Koziolek, Happe, Becker, Reussner, Palladio Component Model

19

For the usage model workload drivers for open or closed workloads simulating

the behavior of users exist in the generated code. For any call issued to the

simulated system, the simulation determines the parameter characterizations of

the input parameters and passes them in a so called virtual stackframe to the

called service. Originally, the concept of a stackframe comes from compiler

construction where they are used to pass parameters to method calls. In the

PCM simulation, stackframes pass the parameter characterizations instead.

Utilizing the information in the simulated stackframes, the simulated SEFF

issues resource demands to the simulated resources. If the resource is contented,

the waiting time increases the processing time of the demand.

The simulation runs until simulation time reaches a predefined upper limit or

until the width of the estimation for the confidence interval of the mean of any

of the measured response times is smaller than a predefined width. After the end

of a simulation run, the simulation result contains different performance

indicators (response times, queue lengths, throughputs …) which the software

architect can analyze to determine performance bottlenecks in the software

architecture.

5.3 Java Code & Performance Prototype (1 Page)

The effort spent into creating a model of a software architecture should be

preserved when implementing the system. For this, a model-to-text

transformation based on the openArchitectureWare (oAW) framework

generates code skeletons from PCM model instances. The implementation uses

either Plain Old Java Objects (POJOs) or Enterprise Java Beans (EJBs) ready

for deployment on a J2EE application server.

The transformation uses as much model information as possible for the

generation of artifacts. Repository models result in components, system

assemblies in distributed method calls, the allocation is used to generate ant

scripts to distribute the components to their host environment and finally, the

usage model results in test drivers.

A particular challenge is the mapping of concepts available in the PCM to

objects used in Java or EJB. Consider for example the mapping of composite

components to Java. As there is no direct support of composed structures in

Java, a common solution to encapsulate functionality is the application of the

session façade design pattern.

Another issue with classes as implementing entities for components is the

missing capabilities to explicitly specify required interfaces of classes in object

oriented languages. A solution for this is the application of the component

context pattern by Völter et al. (2006). This pattern moves the references to

required services into a context object. This object is injected into the

component either by an explicit method call or by a dependency injection

mechanism offered by the application server.

Koziolek, Happe, Becker, Reussner, Palladio Component Model

20

Finally, we can combine the EJB and the simulation transformation. This way,

users can generate a prototype implementation which can be readily deployed

and tested on the final execution environment. Internal actions of the prototype

only simulate resource demands by executing dummy code which offers quality

characteristics as specified in the model. By using the prototype, early

simulation results can be validated on the real target environment to validate

early performance estimates.

6. Example (3 Pages)

To illustrate the performance prediction approach with the PCM, this section

provides a case study, in which we predicted the response time of a usage

scenario in a component-based software architecture and compared the results

with measured response times from executing an implementation.

The system under analysis is the “MediaStore” architecture, a web-based store

for purchasing audio and video files, whose functionality is modeled after

Apple’s iTunes music store. It is a three-tier architecture assembled from a

number of independently usable software components (Figure 9). Users interact

with the store via web browsers, and may purchase and download different

kinds of media files, which are stored in a database connected to the store’s

application server via Gigabit Ethernet.

WebBrowser MediaStoreWebGUI

User

Management
SoundProcessing

Billing

Encoding

Digital

Watermarking

AudioDB

Community

Services

PodcastInternetRadio

Equalizer

Accounting UserDB

DBAdapter

<<ResourceContainer>>

Client

<<ResourceContainer>>

Application Server

<<ResourceContainer>>

DBServer1

<<ResourceContainer>>

DBServer2

Figure 9: MediaStore Architecture

We analysed a scenario, in which users purchase a music album (10-14 files, 2-

12 MB per file) from the store. As a measure for copy protection, a component

“DigitalWatermarking” shall be incorporated into the store. This component

unrecognisable attaches the user’s ID to the audio files via digital watermarking.

In case the audio files would appear illegally in public file sharing services, this

enables tracking down the responsible user. However, this copy protection

measure has an influence on performance, as it decreases the response time of

the store when downloading files. With the model-driven performance

Koziolek, Happe, Becker, Reussner, Palladio Component Model

21

prediction, we analysed whether the store is capable of answering 90% of all

user download requests in less than 8 seconds.

Each component in the store provides RDSEFFs to enable performance

analyses (three examples in Figure 10). The execution time in this use case

mainly depends on the number and size of the files selected for download,

which influences network traffic as well as CPU utilisation for the

watermarking algorithm. The specifications of the the components’ RDSEFFs

have been calibrated with measurements on the individual components. In this

case, we carried out the predictions using SREs.

<<ExternalCallAction>>

queryDB

<<CollectionIteratorAction>>

<<External

CallAction>>

watermark

<<SetVariableAction>>

<<InternalAction>>

search

<<SetVariableAction>>

<<ParametricResourceDemand>>

specification = „1.49E-6 *

StoredFiles.NUMBER_OF_ELEMENTS

+ 0.0096“

<<ProcessingResourceType>>

name = „HD“

<<InternalAction>>

addID

<<InternalAction>>

addText

<<SetVariableAction>>

probIncludeID

1-probIncludeID

probIncludeText

1-probIncludeText

<<VariableUsage>>

fileToMark.BYTESIZE

<<Parameter>>

desiredFiles

<<RDSEFF>>

MediaStore.download
<<RDSEFF>>

AudioDB.getFiles

<<VariableUsage>>

filesIDs.NUMBER_OF_ELEMENTS

<<RDSEFF>>

DigitalWatermarking.

watermark

<<VariableUsage>>

filesToMark.BYTESIZE

<<ParametricResourceDemand>>

specification = „fileToMark.BYTESIZE *

5.11E-9

<<ProcessingResourceType>>

name = „CPU“

<<VariableUsage>>

desiredFiles.NUMBER

_OF_ELEMENTS

<<InternalAction>>

getFiles

<<ParametricResourceDemand>>

specification = „4.0E-8 *

desiredFile.BYTESIZE + 0.08“

<<ProcessingResourceType>>

name = „HD“

Figure 10: MediaStore Service Effect Specifications

Besides modelling the store, we also implemented the architecture assisted by

the introduced model-to-text transformations to Java code (EJB3). After

generating code skeletons from the design, we manually added the

implementation of the business logic of forwarding requests and watermarking

audio files. The code generation also creates build scripts, test drivers,

deployment descriptors, and configuration files. We weaved measurement

probes into the code using AspectJ.

The results of prediction and measurement are compared in Figure 11. The

diagram on the left hand side visualises the histograms of the response times.

The dark columns indicate the prediction, while the bright columns on top of

Koziolek, Happe, Becker, Reussner, Palladio Component Model

22

the dark columns indicate the measurement. The highest probability of

receiving a response from the store with the mentioned parameters is at around

6 second. In this case, the prediction and the measurement widely overlap.

The diagram on the right hand side visualises the cumulative distribution

functions of the response time prediction and measurements. This illustration

allows to easily check our constraint of at least 90% of all responses in less than

8 seconds. It was predicted that 90% of all requests would be responded in 7.8

seconds even if watermarking was used in the architecture. The measurements

confirmed the predictions, because in our tests 90% of the request could be

answered less than 7.8 seconds. There is a difference of 0.1 seconds or 1.3

percent.

Figure 11: Case Study Results

In this case, the predictions were useful to quantitatively support the software

architect’s decision to introduce watermarking without violating a service level

agreement. Note, that the predictions are not meant to be real-time predictions

for safety-critical systems. They are useful at early development stages on the

architectural level to support design decisions and lower the risk of performance

problems in implementations. Safety-critical systems (e.g., airbag controls)

instead need formal verifications of predictions to prevent harming human lives.

That requires more fine grain specifications at lower abstraction levels, which

developers can only create if most details of the system are known.

7. Future Research Directions (350-500 words)

Model-driven performance prediction and quality assurance of software

architecture models is still in its infancy and provides lots of opportunities for

future research. Woodside et al. (2007) recently commented on the future of

software performance engineering. We provide a list of future research

directions from our viewpoint complementing their ideas:

Koziolek, Happe, Becker, Reussner, Palladio Component Model

23

 Intermediate Languages: To bridge the gap between designer-friendly

model notations and analytically-oriented formalisms, many approaches

have developed ad-hoc model transformations. Several approaches aim at

providing a standard interface, i.e., an intermediate modelling language, to

ease the implementation of model transformations (Grassi et al. (2005),

Petriu et. al. (2005))

 Dynamic Architectures: The PCM is only targeted at static architectures,

and does not allow the creation/deletion of components during runtime or

changing links between components. With the advent of web services and

systems with dynamic architectures changing during runtime, researchers

pursuit methods to predict the dynamic performance properties of such

systems (Caporuscio et al. (2007), Grassi et al. (2007)).

 Layered Resource Models: With OMG’s MDA vision of platform

independent models and platform specific models, it seems straight forward

to follow this approach in performance modelling. For different system

layers (e.g., component containers, middleware, virtual machine, operating

system, hardware resources), individual models capturing performance-

relevant properties could be built. These models could be composed with

architectural models to predict the performance (Woodside et. al (2007)).

 Combination of Modeling and Measurement: Developers can only carry

out performance measurements if the system or at least parts of it have been

implemented. Measurement results could be used to improve models. In

component-based performance modelling, measurements are useful to

deduce the resource demands of components. A convergence of early-life

cycle modelling and late-life cycle measurement can potentially increase the

value of performance evaluations (Woodside et. al (2007)).

 Performance Engineering Knowledge Database: Information collected

by using prediction models or measuring prototypes tends to get lost during

system development. However, the information is useful for future

maintenance and evolution of systems. Systematic storage of performance-

related information in a knowledge database could improve performance

engineering (Woodside et. al (2007)).

 Improved Automated Feedback: While today’s model-transformations in

software performance engineering bridge the semantic gap from the

developer-oriented models to the analytical models, the opposite direction

of interpreting performance result back from the analytical models to the

developer-oriented models has received sparse attention. Analytical

performance results tend to be hard to interpret by developers, who lack

knowledge about the underlying formalisms. Thus, an intuitive feedback

from the analytical models to the developer-oriented models would be

appreciated (OMG (2005), Woodside et. al (2007)).

Koziolek, Happe, Becker, Reussner, Palladio Component Model

24

8. Conclusion

This chapter provided an overview of the Palladio Component Model, a

modelling language to describe component-based software architectures aiming

at early life cycle performance predictions. The PCM is aligned with developer

roles in CBSE, namely component developers, software architects, system

deployers, and domain experts. Therefore, the PCM provides a domain specific

modelling language for each of these developer roles. Combining the models

from the roles leads to a full PCM instance specification, which can be

transformed to different analysis models or Java code. An analytical model

(SRE) provides a fast way to predict response times in single-user scenarios.

Simulation of PCM instances is potentially more time-consuming, but offers

support for multi-user scenarios. Finally, developers may use generated Java

code skeletons from a PCM instance as a starting point for implementation. To

illustrate the PCM’s capabilities the chapter included a case study predicting the

performance for a small component-based architecture.

The PCM is useful both for component developers and software architects.

Component developers can specify the performance of their components in a

context-independent way, thereby enabling third party performance predictions

and improving reusability. Software architects can retrieve component

performance specification from repositories and assemble them to architectures.

With the specifications they can quickly analyse the expected performance of

their designs without writing code. This lowers the risk of performance

problems in implemented architectures, which are a result of a poor

architectural design. The approach potentially saves large amounts of money

because of avoided re-designs and re-implementations.

The chapter provided pointers for future directions of the discipline in Section

7. Future work for the PCM includes improving the resource model, supporting

dynamic architectures and reverse engineering. The resource model needs to be

improved to support different scheduling disciplines, concurrency patterns,

middleware parameters, operating system features etc. Dynamic architectures

complicate the model as they allow changing links between components and

allow the creation and deletion of components during runtime. However, this is

common in modern service-based systems, and thus should be incorporated into

performance predictions. Finally, reverse engineering to semi-automatically

deduce performance models from existing legacy code seems an interesting

pointer for future research. Reducing the effort for modelling would convince

more developers of applying performance predictions. The inclusion of legacy

systems enables predicting the impact on performance of planned system

changes.

Koziolek, Happe, Becker, Reussner, Palladio Component Model

25

References

Balsamo, S. , DiMarco, A., Inverardi, P. & Simeoni, M. (2004). Model-Based

Performance Prediction in Software Development: A Survey. IEEE

Transactions on Software Engineering, 30(5), 295-310.

Becker, S.; Grunske, L.; Mirandola, R. & Overhage, S. (2005). Performance

Prediction of Component-Based Systems: A Survey from an Engineering

Perspective. In Springer Lecture Notes in Computer Science Vol. 3938 (pp. 169-

192).

Becker, S., Koziolek, H. & Reussner, R. (2007). Model-based Performance

Prediction with the Palladio Component Model. In Proceedings of the 6th

Workshop on Software and Performance WOSP’07 (pp. 56-67). ACM Press

Bertolino, A. & Mirandola, R. (2004). CB-SPE Tool: Putting Component-Based

Performance Engineering into Practice. In Crnkovic, I., Stafford, J. A., Schmidt,

H. W. & Wallnau, K. C. (Ed.), Proceedings of the 7
th
 International Symposium

on Component-Based Software Engineering, CBSE2004 (pp. 233-248).

Springer Lecture Notes in Computer Science, Vol. 3054

Bondarev, E., de With, P., Chaudron, M. & Musken, J. (2005). Modelling of

Input-Parameter Dependency for Performance Predictions of Component-Based

Embedded Systems. In Proceedings of the 31th EUROMICRO Conference

(EUROMICRO'05)

Caporuscio, M., DiMarco, A. & Inverardi, P. (2007), Model-based system

reconfiguration for dynamic performance management. Journal of Systems and

Software, 80(4), (pp. 455-473). Elsevier

Eskenazi, E., Fioukov, A. & Hammer, D. (2004). Performance Prediction for

Component Compositions. In Crnkovic, I., Stafford, J. A., Schmidt, H. W. &

Wallnau, K. C. (Ed.), Proceedings of the 7
th
 International Symposium on

Component-Based Software Engineering, CBSE2004. Springer Lecture Notes in

Computer Science, Vol. 3054

Grassi, V., Mirandola, R. & Sabetta, A. (2005). From design to analysis models:

a kernel language for performance and reliability analysis of component-based

systems. In Proceedings of the 5th international workshop on Software and

performance, WOSP '05 (pp. 25-36). ACM Press

Grassi, V., Mirandola, R. & Sabetta, A. (2007). A Model-Driven Approach to

Performability Analysis of Dynamically Reconfigurable Component-Based

Koziolek, Happe, Becker, Reussner, Palladio Component Model

26

Systems. In Proceedings of the 6th international workshop on Software and

performance, WOSP '07 (pp. 142-153). ACM Press

Hamlet, D., Mason, D. & Woit, D. (2004). Properties of Software Systems

Synthesized from Components. In Lau, K. (Ed.), Component-Based Software

Development: Case Studies (pp. 129-159). World Scientific Publishing

Company

Hissam, S. A., Moreno, G. A., Stafford, J. A. & Wallnau, K. C.

 (2002). Packaging Predictable Assembly. In CD’02: Proceedings of the

IFIP/ACM Working Conference on Component Deployment (pp. 108-124).

Springer-Verlag

Koziolek, H., Happe, J. & Becker, S. (2006). Parameter Dependent Performance

Specifications of Software Components. In Hofmeister, C., Crnkovic, I.,

Reussner, R. & Becker, S. (Ed.) Proceedings of the 2nd International

Conference on the Quality of Software Architecture, QoSA2006 (pp. 163-179).

Springer Lecture Notes in Computer Science, Vol. 4214

Koziolek, H., Happe, J. & Becker, S. (2007). Predicting the Performance of

Component-based Software Architectures with different Usage Profiles. In

Szyperski, C. & Overhage, S. (Ed.) Proceedings of the 3rd International

Conference on the Quality of Software Architecture, QoSA2007. Springer

Lecture Notes in Computer Science

Petriu, D. B. & Woodside, M. (2005). An intermediate metamodel with

scenarios and resources for generating performance models from UML designs.

Springer Journal on Software and Systems Modeling

Reussner. R. H., Becker, S., Happe, J., Koziolek, H., Krogmann, K. &

Kuperberg. M. (2007). The Palladio Component Model. Internal Report

Universität Karlsruhe (TH)

Sitaraman, M., Kuczycki, G., Krone, J., Ogden, W.F. & Reddy, A. (2001).

Performance Specifications of Software Components. In Proceedings of the

Symposium on Software Reusability 2001 (pp. 3-10).

Szyperski, C., Gruntz, D. & Murer, S. (2002). Component Software: Beyond

Object-Oriented Programming. Addison-Wesley

Wu, X. & Woodside, M. (2004). Performance modeling from software

components. In Proceedings of the 4
th
 International Workshop on Software

Koziolek, Happe, Becker, Reussner, Palladio Component Model

27

Performance, WOSP2004 (pp. 290-301). ACM SIGSOFT Software

Engineering Notes

Völter, M. & Stahl, M. (2006). Model-driven Software Development. Wiley &

Sons

Woodside, M., Franks, G. & Petriu D. C. (2007). The Future of Software

Performance Engineering. In Proceedings of 29th International. Conference on

Software Engineering, ICSE’07. Track: Future of Software Engineering.

Additional Reading (25-50 References)

Bolch, G., Greiner, S., de Meer, H. & Trivedi, K. S. (2006). Queueing Networks

and Markov Chains: Modeling and Performance Evaluation with Computer

Science Applications. Wiley-Interscience, 2
nd

 Edition

Cecchet, E., Marguerite, J. & Zwaenepoel, W.(2002) Performance and

scalability of EJB applications. ACM SIGPLAN Notes, 37(11), 246-261

Chen, S., Liu, Y., Gorton, I. & Liu, A. (2005). Performance prediction of

component-based applications. Journal of Systems and Software, 74(1), 35-43.

DiMarco, A. & Mirandola, R. (2006). Model transformations in Software

Performance Engineering. Springer Lecture Notes in Computer Science, Vol.

4214, 95-110

Dumke, R., Rautenstrauch, C., Schmietendorf, A. & Scholz, A. (2001).

Performance Engineering: State of the Art and Current Trends. Springer

Lecture Notes in Computer Science, Vol. 2047

Grassi, V., Mirandola, R. & Sabetta, A. (2006). Filling the gap between design

and performance/reliability models of component-based systems: A model-

driven approach. Journal of Systems and Software, 80(4), 528-558.

Hermanns, H., Herzog, U. & Katoen, J. (2002) Process algebra for performance

evaluation. Theorectical Computer Science, 274(1-2), Elsevier Science

Publishers Ltd., 43-87

Jain, R. K. (1991). The Art of Computer Systems Performance Analysis:

Techniques for Experimental Design, Measurement, Simulation, and Modeling.

Wiley

Koziolek, Happe, Becker, Reussner, Palladio Component Model

28

Kounev, S. (2006). Performance Modeling and Evaluation of Distributed

Component-Based Systems Using Queueing Petri Nets. IEEE Transactions on

Software Engineering, 32(7), 486-502.

Lazowska, E.; Zahorjan, J.; Graham, G. & Sevcik, K. (1984). Quantitative

System Performance, Prentice Hall

Liu, Y., Fekete, A. & Gorton, I. (2005). Design-Level Performance Prediction

of Component-Based Applications. IEEE Transactions on Software

Engineering, 31(11), 928-941.

Menasce, D. A. & Gomaa, H. (2000). A Method for Design and Performance

Modeling of Client/Server Systems. IEEE Transactions on Software

Engineering, 26(11), 1066-1085

Menasce, D. A. & Almeida, V. A.(2000) Scaling for E-Business: Technologies,

Models, Performance, and Capacity Planning, Prentice Hall

Menasce, D. A. & Almeida, V. A.(2002) Capacity Planning for Web Services,

Prentice Hall

Menasce, D. A., Dowdy, L. W. & Almeida, A.F. (2004). Performance by

Design: Computer Capacity Planning By Example, Prentice Hall PTR

Reussner, R. H., Schmidt, H. W. & Poernomo, I. H. (2003). Reliability

prediction for component-based software architectures. Journal of Systems and

Software, 66(3), 241-252.

Rolia, J. A. & Sevcik, K. C. (1995). The Method of Layers. IEEE Transactions

on Software Engineering, 21(8), 689-700

Smith, C. U. & Williams, L. G. (2001). Performance Solutions: A Practical

Guide to Creating Responsive, Scalable Software. Addison-Wesley Professional

Verdickt, T., Dhoedt, B., Gielen, F. & Demeester, P (2005). Automatic

Inclusion of Middleware Performance Attributes into Architectural UML

Software Models. IEEE Transactions on Software Engineering, 31(8), 695-771.

Woodside, C. M., Neilson, J. E., Petriu, D. C. & Majumdar, S. (1995) The

Stochastic Rendezvous Network Model for Performance of Synchronous

Client-Server-like Distributed Software. IEEE Transactions on Computers,

44(1), 20-34.

